Mechanical losses. After the gas power is calculated by either the polytropic or adiabatic compression method, power losses due to friction in bearings, seals and speed-increasing gears should be added. Although there is no accurate method to estimate mechanical losses from gas power requirements, Table 2 gives approximate mechanical losses as a percentage of the gas power requirement.⁵

The mechanical losses can be calculated by:

 $Mechanical\ losses = (Power)(\%\ Mechanical\ losses)$ (58)

The total power required is:

Design problem. A centrifugal compressor is to be specified for a gas plant. The unit is to compress 8,200 kg/hr of gas mixture at 66° C from 1.5 bara to 5.5 bara. The gas mixture consists of 30% hydrogen (H₂), 45% methane (CH₄), 15% ethane (C₂H₆), 7% propane (C₃H₈) and 3% n-butane (n-C₄H₁₀). Assuming a polytropic efficiency of 87%, adiabatic efficiency is 85%, suction compressibility factor Z_1 = 0.97 and discharge compressibility factor Z_2 = 0.93, calculate the adiabatic head, discharge temperature, actual work required and the total brake power. Table 3 gives the properties of the gas mixture.

The mixture specific heat ratio, k, is defined by:

$$k = \frac{MC_p}{MC_v} = \frac{MC_p}{MC_p - 8.314}$$
$$k = \frac{43.34}{35.026} = 1.237$$

The average molecular weight of the gas mixture: $M_w = 17.162$.

Conversions:

14.5 psi = 1 bar

$$1\frac{Btu}{lb°F} = 4.2 \frac{kJ}{kg K}$$

Solution. A computer program has been developed for either adiabatic or polytropic compression using the equations described in this article. (The program is available from the author for a nominal fee to cover postage and handling. Contact Dr. A. K. Coker, A.K.C. Technology, 131 George Frederick Road, Sutton Coldfield, West Midlands, B736TE U.K.) Table 4 gives the results of the gas mixture. The results show that:

The adiabatic head =
$$230.3 \frac{kJ}{kg}$$

The discharge temperature = 162°C

The actual work required = $276.6 \frac{kJ}{kg}$

Total brake power = 649 kW.

$$P_{TOTAL} = Power + Mechanical losses$$

Multicomponent gas streams. Designing a gas compressor for a gas mixture involves estimating the thermodynamic properties. The procedure for calculating gas mixture properties is to use the weighted molal average of the property. These thermodynamic properties are estimated as:

(59)

Molecular weight
$$M_{w, mixture} = \sum_{i=1}^{n} y_i M_i$$
 (60)

Reduced temperature
$$T_{r, mixture} = \sum_{i=1}^{n} y_i T_{r, i}$$
 (61)

Reduced pressure
$$P_{r, mixture} = \sum_{i=1}^{n} y_i P_{r, i}$$
 (62)

Molal heat capacity
$$MC_{p, mixture} = \sum_{i=1}^{n} y_i MC_{p, i}$$
 (63)

Ratio of molal heat capacities

$$k_{mixture} = \frac{MC_{p, mixture}}{MC_{v, mixture}} = \frac{MC_{p, mixture}}{(MC_{p, mixture} - 8.314)}$$
(64)

Compressibility factor $Z_{mixture} = f(T_r, P_r)$ (65) for the mixture.

The compressibility Z factor for natural gas is deter-

Table 3. Properties of the gas mixture

	Mole fraction,	Molecular weight,				MC _p ,	yMC _p ,
Gas	У	Mw	yM_w	P _c , psia	T _c , °R	kg K	66°C
Ho	0.30	2.01	0.603	188.1	60.2	29.15	8.75
CH ₄	0.45	16.04	7.218	666.0	343	37.59	16.92
C ₂ H ₆	0.15	30.07	4.511	707	550	57.88	8.68
C ₃ H ₈	0.07	44.09	3.086	616	660	81.98	5.74
nC ₄ H ₁₀	0.03	58.12	1.744	551	765	108.40	3.25
4 10		$M_w =$	17.162			$MC_p =$	43.34

Table 4. Adiabatic compressor sizing

Gas flowrate, kg/hr:	8,200.000
Suction temperature, °C:	66.000
Suction pressure, bara:	1.500
Suction density, kg/m ³ :	0.941
Suction volumetric rate, m³/hr:	8,712.212
Suction compressibility factor, Z_1 :	0.970
Discharge temperature, °C:	161.863
Discharge pressure, bara:	5.500
Discharge density, kg/m ³ :	2.806
Discharge volumetric rate, m³/h:	2,921.988
Discharge compressibility factor, Z ₂ :	0.930
Compression ratio, R_c :	3.667
Ratio of specific heats capacities, k:	1.237
Polytropic exponent, n:	1.282
Molecular weight of gas, kg/kg-mole, Mw:	17.162
Average compressibility factor, Z_{az} :	0.950
Adiabatic efficiency, %:	85.000
Polytropic efficiency, %:	87.000
Adiabatic head, kJ/kg:	230.270
Adiabatic work done, kJ/kg:	235,118
Actual work done, kJ/kg:	276.609
Power demand by the compressor, kW:	630.054
Power losses due to friction in bearings, kW:	18.902
Total brake power, kW:	648.956
Calculated adiabatic efficiency from	
polytropic efficiency, %:	85.326